





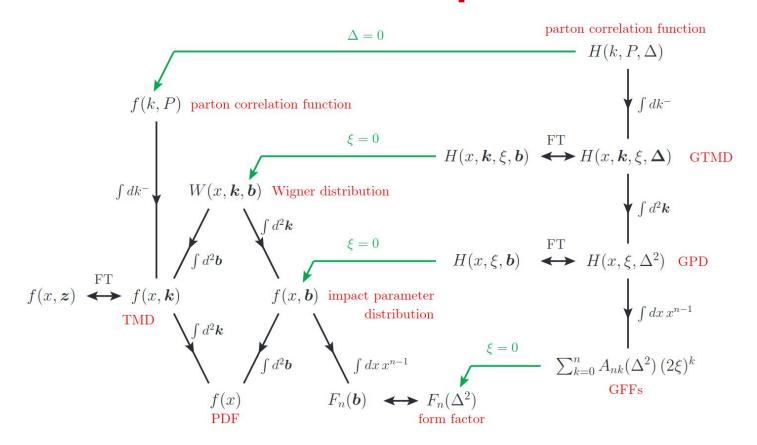
# **Andrea Signori**

University of Pavia, INFN, Jefferson Lab

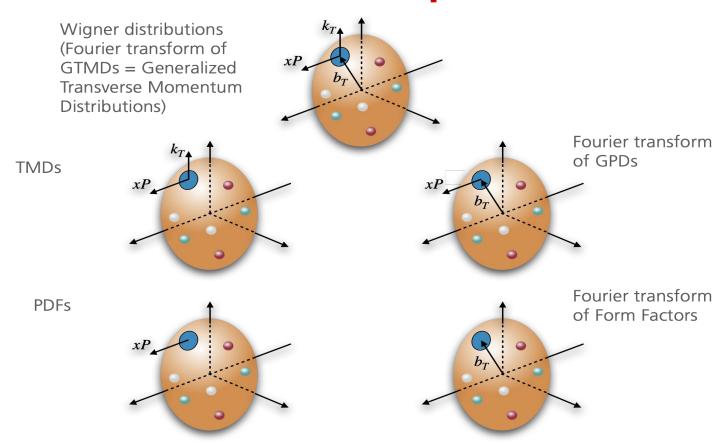
# TMD PDFs and FFs pheno & tools

MC4EIC - Monte Carlo event simulations for the EIC

### 1. Introduction


# Outline

2. Experimental information


3. TMDs: recent phenomenology

4. TMDs: tools

# The hadron structure landscape



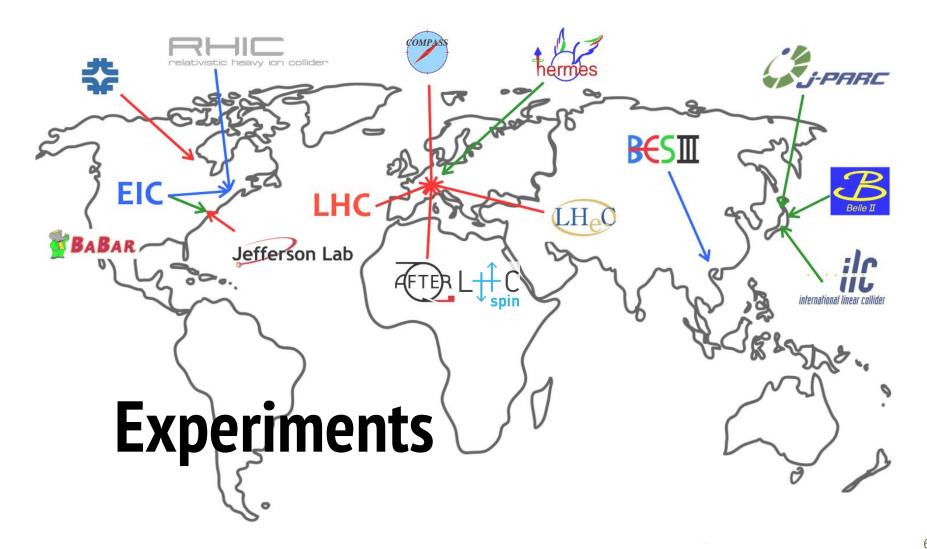

# The hadron structure landscape



# Hadronization and fragmentation functions (FFs)

### "Maps" of hadron formation in momentum space




$$D_1^h(z)$$
 single-hadron collinear FF

$$D_1^h(z,P_T^2)$$
 single-hadron TMD FF

$$D_1^{\,h_1\,h_2}(z,\zeta)$$
 di-hadron FF

$$J(s)$$
 inclusive jet FF

$$\mathcal{G}^h(s,z)$$
 in-jet FF



2020 PDFLATTICE REPORT

5

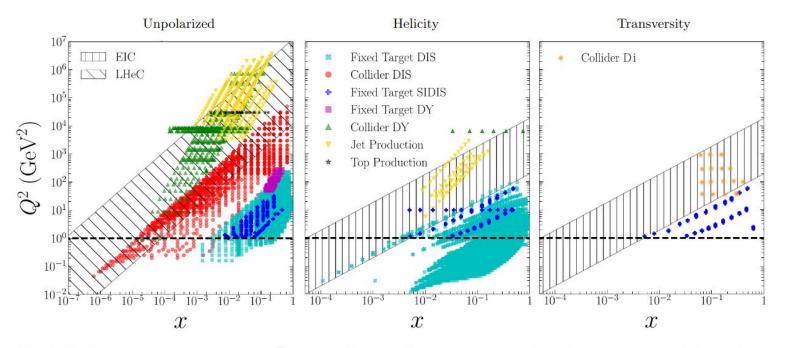
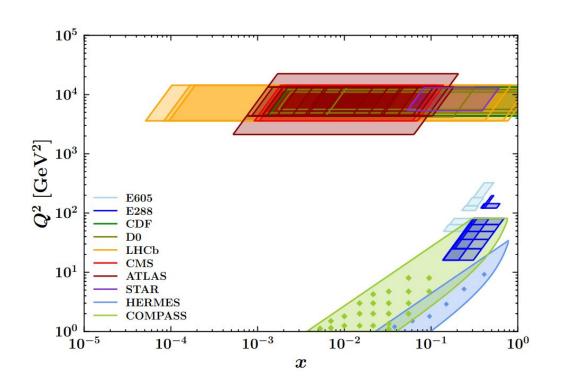




FIG. 1 The kinematic coverage in the  $(x, Q^2)$  plane of the hadronic cross-section data for the processes commonly included in global QCD analyses of collinear unpolarized, helicity, and transversity PDFs. The extended kinematic ranges attained by the LHeC and the EIC are also displayed. See Fig. 1 of Ref. (Ethier and Nocera, 2020) for unpolarized nuclear PDFs.

# **Enough data..?**



# Experimental data for unpolarized TMDs

From Pavia analysis (work in progress)

Semi-Inclusive DIS, Drell-Yan, Z-production

Need more multidimensional data!

# **SIDIS** coverage

Importance of complementary experiments

from JLab 12 GeV, Hermes, Compass to the EIC

zooming into hadron structure

10<sup>3</sup> Kinematic coverage in ep scattering **EIC** 10<sup>2</sup>  $Q^2$  [GeV<sup>2</sup>] 10<sup>1</sup>  $\sqrt{s} = 100 \text{ GeV}$  $\sqrt{s} = 20 \text{ GeV}$ JLab 12 10-3  $10^{-2}$ 10<sup>-1</sup> 10-4 QCD radiation non-pert. interact. saturation  $\Rightarrow$  $10^{-1}$  $10^{-2}$ radiative gluons/sea sea quarks gluons valence quarks gluons

Credit picture: C. Weiss

# **TMDs** and recent phenomenology

# TMD PDFs for quarks in nucleon

quark pol.

nucleon pol.

|   | U                | L        | Т                      |
|---|------------------|----------|------------------------|
| U | $f_1$            |          | $h_1^\perp$            |
| L |                  | $g_{1L}$ | $h_{1L}^{\perp}$       |
| Т | $f_{1T}^{\perp}$ | $g_{1T}$ | $h_1$ , $h_{1T}^\perp$ |

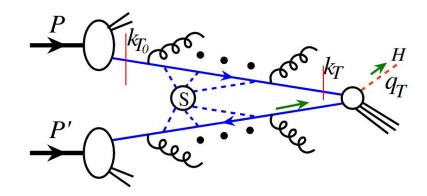
 $iggl iggl \Phi_{ij}(k,P) \, = \, ext{F.T.} igl \langle P iggr | \, \overline{\psi_j}(0) \, U \, \psi_i(\xi) iggr | P igr 
angle \, .$ 

At leading twist: 8 TMD PDFs

(similar classification for gluons and for FFs)

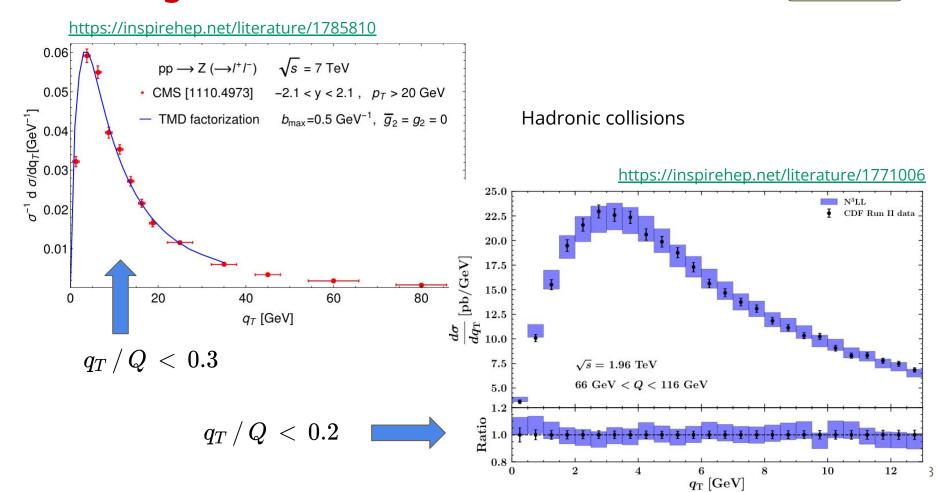
- **Black**: time-reversal even AND collinear
- Blue: time-reversal even
- **Red**: time-reversal odd (*process dependence*)

The **symmetries of QCD** play a crucial role in this classification


# **TMD** factorization

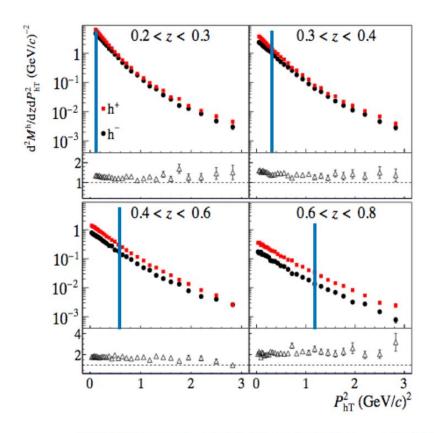
$$q_T \ll Q$$

$$pp\,\longrightarrow\,\gamma^{\cdot}\,/\,Z\,\longrightarrow l\,ar l\,+\,X$$


$$rac{d\sigma}{dq_T} \sim \mathcal{H} \, f_1(x_a, k_{T\,a}, Q, Q^2) \, f_1(x_b, k_{T\,b}, Q, Q^2) \, \delta^{(2)} ig( q_T - k_{T\,a} - k_{T\,b} ig) \, + \mathcal{O}(q_T/Q) \, + \, \mathcal{O}(\Lambda/Q)$$

- The TMDs reproduce the structure of the IR poles in the cross section (same non-perturbative physics)
- The observed transverse momentum is accounted for by the transverse momenta of quarks
- The quark transverse momentum has radiative (perturbative) and intrinsic (non-perturbative) components
- Renormalization = evolution equations tell us how to distinguish between the two




# TMD region: low transverse momentum





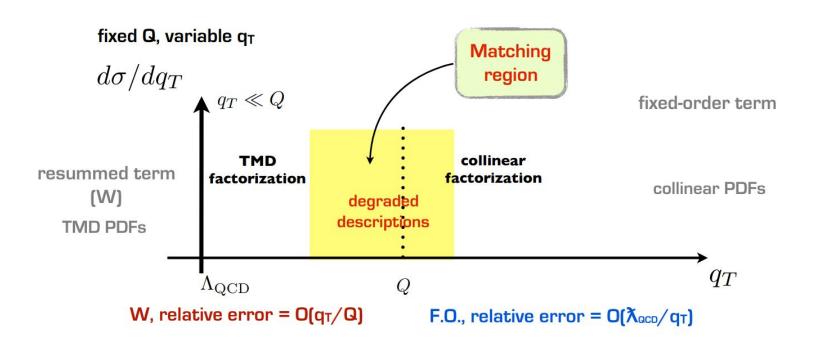
# TMD region: low transverse momentum





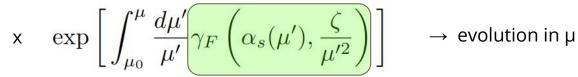
### SIDIS - TMD region

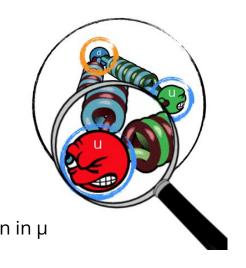
$$P_{hT}^2/z^2 \ll Q^2$$


### Let's highlight

$$P_{hT}^2/z^2 \sim 0.25 \ Q^2$$

One of the bins with highest Q:


$$\langle Q^2 \rangle = 9.78 \text{ GeV}^2$$
  
 $\langle x \rangle = 0.149$ 


# Matching TMD and collinear factorization



# QCD evolution of a TMD PDF

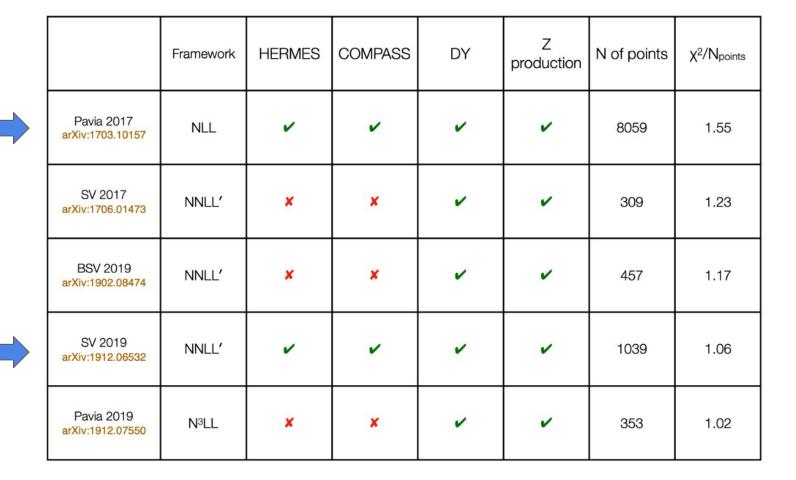
$$F_a(x,b_T^2;\mu,\zeta) = F_a(x,b_T^2;\mu_0,\zeta_0)$$
  $\rightarrow$  TMD distribution at initial scales





### Calculable in pQCD

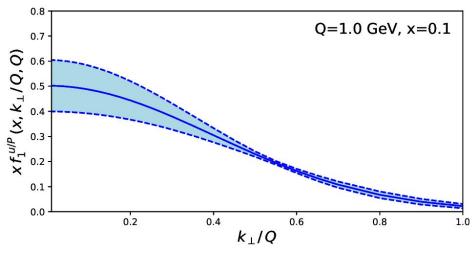
$$\times \left(\frac{\zeta}{\zeta_0}\right)^{-D(b_T\mu_0,\alpha_s(\mu_0))} + g_K(b_T;\lambda) \to \text{evolution in } \zeta$$


Non-pert. corrections (large bT)

$$F_a(x, b_T^2; \mu_0, \zeta_0) = \sum_b C_{a/b}(x, b_T^2, \mu_0, \zeta_0) \otimes f_b(x, \mu_0) F_{NP}(b_T; \lambda)$$

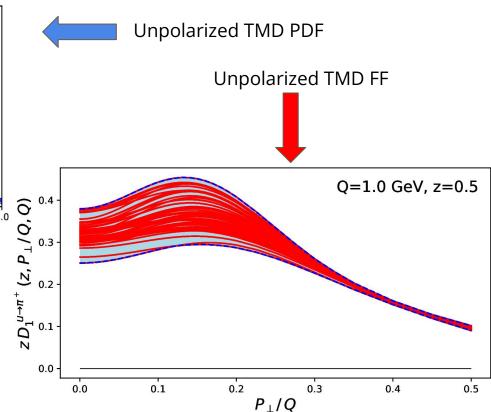
Prior knowledge assumed (?)

See e.g. <a href="https://inspirehep.net/literature/1785810">https://inspirehep.net/literature/1785810</a> (but also JCC book and his talk later today)


# A selection of recent fits



# **Unpolarized TMDs: PV17**


see <a href="https://inspirehep.net/literature/1520011">https://inspirehep.net/literature/1520011</a>

Imaging from **SIDIS** data (Hermes and Compass) and **Drell-Yan** data (fixed-target & Z production @ Fermilab)

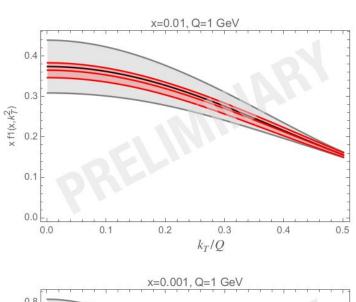


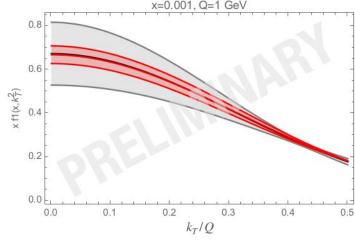
Combining SIDIS and Drell-Yan: Possibility to disentangle hadron structure and formation

See https://inspirehep.net/literature/1520011



# **TMD** impact studies: PV17


200 replicas are compared with pseudodata

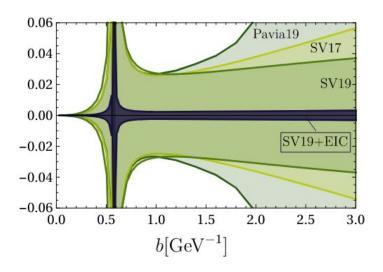

$$\chi_k^2 = \chi_{k,\rm EIC}^2 + \chi_{k,\rm PV17}^2$$
 'original'  $\chi^2$  with respect to PV17 data

weights  $w_k \propto \mathcal{P}(f_k|\chi_k) \propto \chi_k^{n-1} e^{-rac{1}{2}\chi_k^2}$ 

Reweighting technique (no fit of EIC pseudo-data)

(see C. Bissolotti's talk at DIS 2021)






# TMD impact studies: SV19

$$\left(\frac{\zeta}{\zeta_0}\right)^{-D(b_T\mu_0,\alpha_s(\mu_0))} + \frac{g_K(b_T;\lambda)}{+g_K(b_T;\lambda)}$$

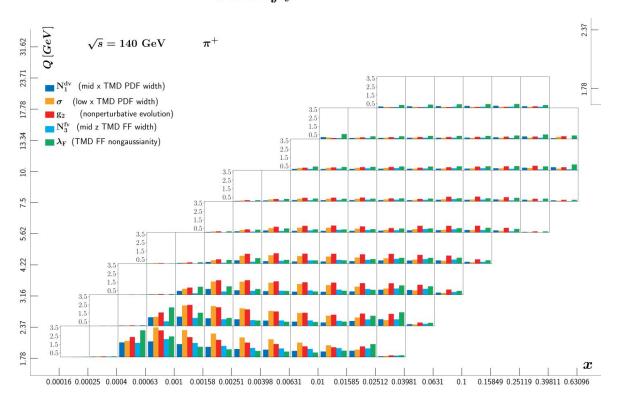
$$\to \text{ evolution in } \zeta$$

Non-pert. corrections (large bT)



Typically a function of bT^2 with one or two parameters (with variations of course)

Huge impact of EIC SIDIS program on non-perturbative TMD evolution


# **TMD** impact studies: PV17

(see C. Bissolotti's talk at DIS 2021)

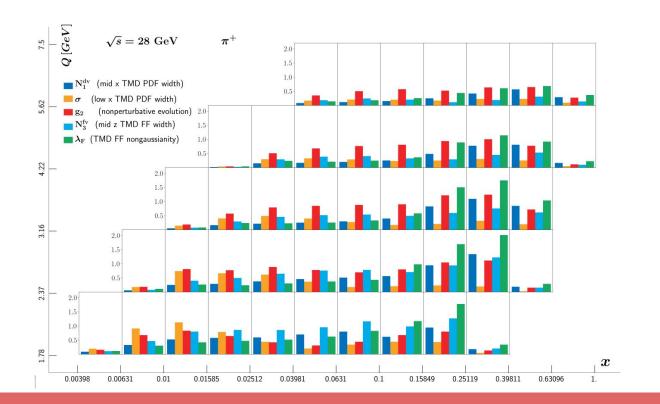
$$S[f_i, \mathcal{O}] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\delta \mathcal{O} \Delta f_i}$$

O: e.g. a SIDIS structure function

fi: the non-perturbative TMD parameters



$$\sqrt{s} = 140 \text{ GeV}$$


# **TMD** impact studies: PV17

(see C. Bissolotti's talk at DIS 2021)

$$S[f_i, \mathcal{O}] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\delta \mathcal{O} \Delta f_i}$$

O: e.g. a SIDIS structure function

fi: the non-perturbative TMD parameters



$$\sqrt{s} = 28 \text{ GeV}$$

Stronger effect at lower energies

# Different frameworks, same observable

$$\begin{pmatrix} \frac{q_T - \text{res.}}{\propto} & e^{2S} \left[ f_1 \otimes \mathcal{H} \otimes f_2 \right] \\ \left( \frac{d\sigma}{dq_T} \right)_{\text{res.}} & \overset{\text{TMD}}{\propto} & H \times F_1 \times F_2 & + \mathcal{O} \left[ \left( \frac{q_T}{Q} \right)^m \right] \\ & \overset{\text{SCET}}{\propto} & H \times B_1 \times B_2 \times S \end{pmatrix}$$

$$\mathcal{H} = HC_1C_2$$

$$F_i = e^S C_i \otimes f_i$$





Dictionary to compare different factorization frameworks

"equivalent" to the extent of describing TMD physics

# **Tools for TMD physics**



# Codes

**SCETlib** 

[https://confluence.desy.de/display/scetlib]

CuTe

[https://cute.hepforge.org/]

**SCET** 

DYRes/DYTurbo, DYqT, etc.

[https://gitlab.cern.ch/DYdevel/DYTURBO]

ReSolve

[https://github.com/fkhorad/reSolve]

ResBos

[https://resbos.hepforge.org/]

### qT resummation

### TMD factorization

arTeMiDe
[https://teorica.fis.ucm.es/artemide/]

Nanga Parbat [https://github.com/MapCollaboration/NangaParbat]

### Parton branching

**RadISH** 

[https://arxiv.org/pdf/1705.09127.pdf]

**PB-TMDs** 

[https://arxiv.org/pdf/1906.00919.pdf]

# Codes

Excellent accuracy **BUT** only unpolarized and leading twist!



- Perturbative QCD: PDF evolution, scale variation, matching with fixed-order
- Non-perturbative QCD: treatment of Landau pole, intrinsic-kT

### Resummed predictions of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at the LHC

# LHC EWWG "yellow report"

Insert your name and institutional address<sup>a</sup>

a World

| 4 | b | S | t | r | a | c | t |  |
|---|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |   |  |

Placeholder

Keywords: Drell-Yan, Resummation, LHC

| C | an  | ten  | te  |
|---|-----|------|-----|
| · | UII | LCI. | u.o |

| 1 | Intr | oduction                      |  |
|---|------|-------------------------------|--|
| 2 | Resi | ummation formalism            |  |
| 3 | Setu | p for benchmark predictions   |  |
|   | 3.1  | Level 1 predictions           |  |
|   | 3.2  | Level 2 predictions           |  |
|   | 3.3  | Level 3 predictions           |  |
| 4 | Resi | ults for level 1 predictions  |  |
|   | 4.1  | Landau pole regularization    |  |
|   | 4.2  | Resummation scheme            |  |
|   | 4.3  |                               |  |
| 5 | Resi | ults for level 2 predictions  |  |
|   | 5.1  | Modified logarithms           |  |
|   | 5.2  | Perturbative scale variations |  |

| 6 | Res  | ults for | level  | 3 predictions                   |    |
|---|------|----------|--------|---------------------------------|----|
|   | 6.1  | Fixed    | order  | predictions                     |    |
|   | 6.2  | Pertu    | bative | e scale variations              |    |
|   | 6.3  |          |        | ncertainties                    |    |
|   | 6.4  |          |        | k thresholds                    |    |
| 7 | Non  | -pertu   | rbativ | ve contributions                |    |
| 8 | Sun  | nmary    |        |                                 |    |
| A | ppen | dix A    | D      | escription of resummation codes | 10 |
|   | Ap   | pendix   | A.1    | ArTeMiDe                        | 10 |
|   | Ap   | pendix   | A.2    | Cute-MCFM                       | 10 |
|   | Ap   | pendix   | A.3    | DYRes/DYTURBO                   |    |
|   | Ap   | pendix   | A.4    | NangaParbat                     |    |
|   | Ap   | pendix   | A.5    | RadISH                          |    |
|   | Ap   | pendix   | A.6    | Resbos 2                        |    |
|   | Ap   | pendix   | A.7    | reSolve                         | 10 |
|   | Ap   | pendix   | A.8    | SCETLib                         | 10 |

1. Introduction



# **TMDlib**

https://tmdlib.hepforge.org/

- Home
- TMDplotter
- Source Code Download
- PDF sets (names)
- PDF sets Download (New)
- Updates/News
- Source Code Download (Old)
- TMD-Project
- CCFM uPDF evolution code
- Contact

TMDlib is hosted by Hepforge, IPPP Durham

### **TMDlib**

TMDlib2 and TMDplotter: a platform for 3D hadron structure studies

### NEW manual released 2103.09741

- TMDplotter
- Download source from TMDlib 2.X
- Download source from TMDlib 1.X
- Any questions or comments should be directed to tmdlib@projects.hepforge.org.
- TMDlib1 Doxygen Documentation

# **TMDlib**

**PB TMDs**, etc



| iset             | uPDF/TMD set                    | Subsets | Ref  |
|------------------|---------------------------------|---------|------|
| 101000           | ccfm-JS-2001                    | 1       | 63   |
| 101010           | ccfm-setA0                      | 4       | [63] |
| 101020           | ccfm-setB0                      | 4       | [63] |
| 101001           | ccfm-JH-set1                    | 1       | 64   |
| 101002           | ccfm-JH-set2                    | 1       | [64] |
| 101003           | ccfm-JH-set3                    | 1       | [64] |
| 101201           | ccfm-JH-2013-set1               | 13      | 65   |
| 101301           | ccfm-JH-2013-set2               | 13      | 65   |
| 101401           | MD-2018                         | 1       | 66   |
| 101410           | KLSZ-2020                       | 1       | 67   |
| 102100           | PB-NLO-HERAI+II-2018-set1       | 35      | 43   |
| 102200           | PB-NLO-HERAI+II-2018-set2       | 37      | 43   |
| 102139           | PB-NLO-HERAI+II-2018-set1-q0    | 3       | 43   |
| 102239           | PB-NLO-HERAI+II-2018-set2-q0    | 3       | 43   |
| 103100           | PB-NLO+OED-set1-HERAI+II        | 1       | 68   |
| 103200           | PB-NLO+OED-set2-HERAI+II        | 1       | 68   |
| 10904300         | PB-NLO ptoPb208-set1            | 1       | 69   |
| 10904400         | PB-NLO ptoPb208-set2            | 1       | 69   |
| 10901300         | PB-EPPS16nlo_CT14nlo_Pb208-set1 | i       | 69   |
| 10901400         | PB-EPPS16nlo_CT14nlo_Pb208-set2 | 1       | 69   |
| 10901400         | PB-nCTEQ15FullNuc 208 82-set1   | 33      | 69   |
| 10902300         | PB-nCTEQ15FullNuc_208_82-set1   | 33      | 69   |
| 200001           | GBWlight                        | 1       | 70   |
| 200001           | GBWcharm                        | 1       |      |
|                  | Blueml                          | 1       | 70   |
| 210001           |                                 |         | 71   |
| 400001           | KS-2013-linear                  | 1       | 72   |
| 400002           | KS-2013-non-linear              | 1       | 72   |
| 400003           | KS-hardscale-linear             | 1       | 73   |
| 400004           | KS-hardscale-non-linear         | 1       | 73   |
| 400101           | KS-WeizWill-2017                | 1       | 74   |
| 500001           | EKMP                            | 1       | 75   |
| 410001           | RHKS                            | 1       | 76   |
| 300001           | SBRS-2013-TMDPDFs               | 1       | 77   |
| 300002           | SBRS-2013-TMDPDFs-par           | 1       | 77   |
| 601000           | PV17_grid_pdf                   | 201     | 45   |
| 602000           | PV17_grid_ff_Pim                | 201     | 45   |
| 603000           | PV17_grid_ff_Pip                | 201     | 45   |
| 604000           | PV17_grid_FUUT_Pim              | 100     | 45   |
| 605000           | PV17_grid_FUUT_Pip              | 100     | 45   |
| 606000           | PV19_grid_pdf                   | 216     | 78   |
| 607000           | PV20_grid_FUTTsin_P_Pim         | 101     | 79   |
| 608000           | PV20_grid_FUTTsin_P_Pip         | 101     | 79   |
| 701000           | SV19_nnlo                       | 23      | 80   |
| 702000           | SV19 nnlo all=0                 | 21      | 80   |
| 703000           | SV19_n31o                       | 23      | 80   |
| 704000           | SV19_n3lo_a11=0                 | 21      | 80   |
| 705000           | SV19_ff_pi_n3lo                 | 23      | 80   |
| 706000           | SV19_ff_pi_n3lo_al1=0           | 21      | 80   |
| 707000           | SV19_ff_K_n3lo                  | 23      | 80   |
| 708000           | SV19 ff K n3lo all=0            | 21      | 80   |
| - 00000          |                                 | 7       | 81   |
| 709000           |                                 |         |      |
| 709000<br>710000 | SV19_pion<br>SV19_pion_all=0    | 7       | 81   |

https://inspirehep.net/literature/1852038

https://tmdlib.hepforge.org/



### **TMD factorization**:

Unpolarized TMDs (PV13, PV17, SV19) Sivers TMD PDF (PV20, BPV20)

SIDIS structure functions (PV17, PV20)

# **Event generators**

### **Based on TMDs:**

- Cascade (PB TMDs)
   [https://cascade.hepforge.org/]
- gmctrans/TMDgen
  - parton model level TMDs
  - includes polarization and higher twist, but no evolution: too primitive for EIC?
  - semi-inclusive

[https://wiki.bnl.gov/eic/index.php/Gmc\_trans

Hermes collaboration + independent work]

### **Exclusive generators with transverse momentum effects**

- Pythia [https://pythia.org/]
- Herwig [https://herwig.hepforge.org/]
- Geneva [https://stash.desy.de/projects/GENEVA]

- ...

# **Conclusions and outlook**

- We are working hard to build "maps" of hadron structure and formation: parton distribution and fragmentation functions and the like, connected to fundamental properties of QCD
- Crucial input is provided by experiments.
   The Electron-Ion Collider is the next experimental frontier of QCD and will provide us with a wealth of information: we have to be ready for that!
- 3. Which **tools for TMD physics** are most needed? How can **theorists** and **experimentalists work together** to develop these tools?
- 4. Can we define **"best practices"** for these tools? Standard formats, availability, etc.?

# Backup

# **Unpolarized TMDs: SV19**

Extraction from **SIDIS** (Hermes, Compass) and **Drell-Yan** data (Phenix, fixed-target at Fermilab, CDF, DO, ATLAS, CMS, LHCb)

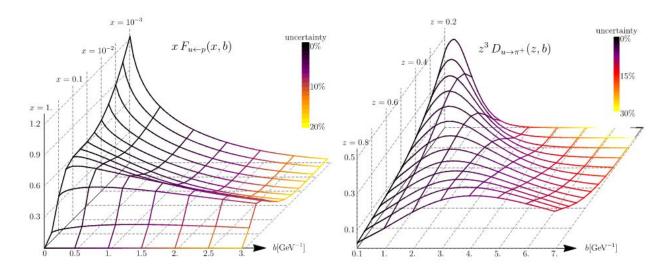
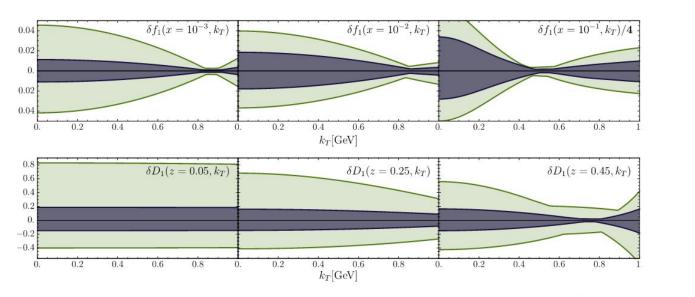




Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the relative size of the uncertainty band



**Figure 7.52:** Comparison of relative uncertainty bands (i.e. uncertainties normalized by central value) for up-quark unpolarized TMD PDFs (upper panel) and  $u \to \pi^+$  pion TMD FFs (lower panel), at different values of x and z as a function of  $k_T$ , for  $\mu=2$  GeV. Lighter band is the SV19 extraction, darker is SV19 with EIC pseudodata.

Up in proton **TMD PDF** 

Up to pion+

Fit with EIC pseudo-data

# Quark TMD PDFs (spin ½)

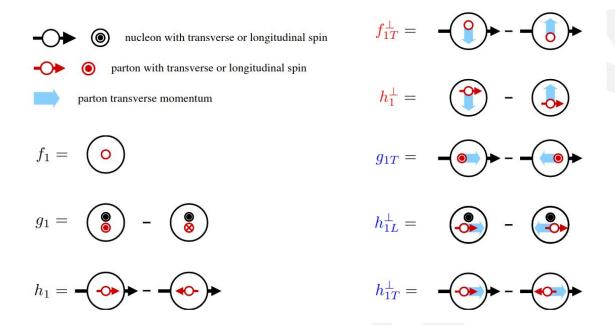



Figure 3.5: Probabilistic interpretation of twist-2 transverse-momentum-dependent distribution functions. To avoid ambiguities, it is necessary to indicate the directions of quark's transverse momentum, target spin and quark spin, and specify that the proton is moving out of the page, or alternatively the photon is moving into the page.

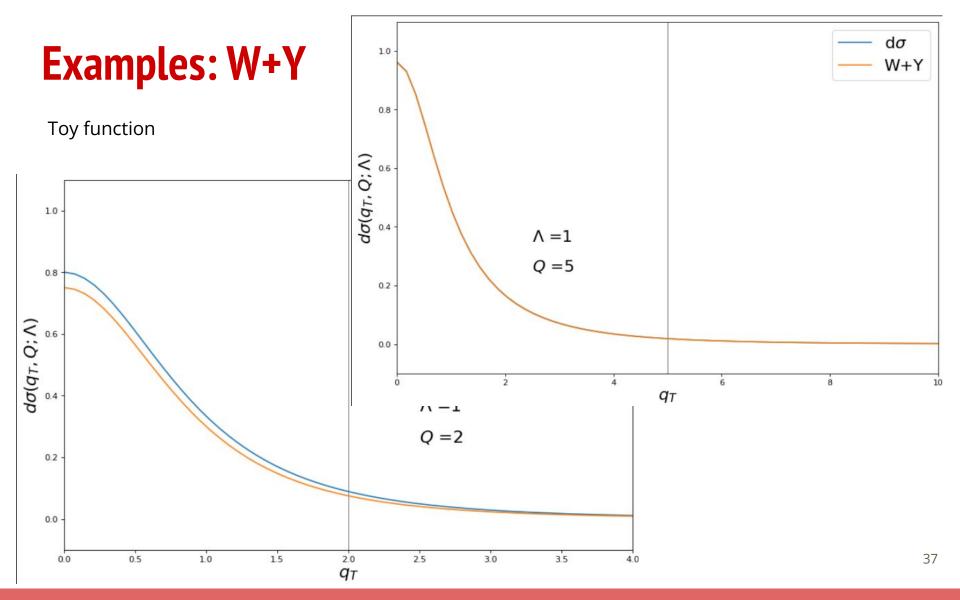
# **Matching schemes**

### "Subtraction" schemes:

cross section = W + (FO - ASY) = W + Y

cross section = W \* FO / ASY

At low Q (e.g. SIDIS) these cancellations do not work well as expected


### "Average" scheme :

AS et al. <a href="https://inspirehep.net/literature/1646273">https://inspirehep.net/literature/1646273</a>

Cross section = **a W + b FO** 

a, b: weights related to *power corrections to factorization theorems* 

(weighted average scheme: model-dependence better under control)



# **Collinear and TMD single-hadron FFs**

quark pol.

hadron pol.

|   | U                | L        | Т                        |
|---|------------------|----------|--------------------------|
| U | $D_1$            |          | $H_1^\perp$              |
| L |                  | $G_{1L}$ | $H_{1L}^{\perp}$         |
| Т | $D_{1T}^{\perp}$ | $G_{1T}$ | $H_1$ , $H_{1T}^{\perp}$ |

At leading twist: 8 TMD FFs and 3 collinear FFs (diagonal)

The **symmetries of QCD** play a crucial role in this classification

Universality..!

# **Transversity**

Distribution of transversely polarized quarks in a transversely polarized nucleon

Chiral-odd function - needs a chiral odd partner in the cross section

Potential to access new physics in high-precision low-energy experiments

quark pol.

|         |   | U                | L        | Т                      |
|---------|---|------------------|----------|------------------------|
| pol.    | U | $f_1$            |          | $h_1^\perp$            |
| nucleon | L |                  | $g_{1L}$ | $h_{1L}^{\perp}$       |
| nnc     | Т | $f_{1T}^{\perp}$ | $g_{1T}$ | $h_1$ , $h_{1T}^\perp$ |



# Separating small and large bT

One needs to "separate" the small (perturbative) bT region from the large (non-perturbative) bT region:

$$lpha_s(\mu = \mu_b \sim 1/b_T) \ \longrightarrow \ b_T < b_{max}$$

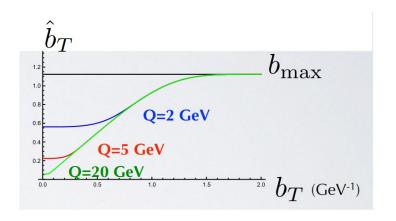
Avoid the Landau pole of QCD

$$\int_{\mu_b \, \sim \, 1/b}^Q \, \gamma_F \; , \;\; \mu_b \, < \, Q \;\; \longrightarrow \;\; b_T \, > \, b_{
m min} \; .$$

Otherwise gluon "absorption" instead of "emission"

# Separating small and large bT

One needs to "separate" the small (perturbative) bT region from the large (non-perturbative) bT region:

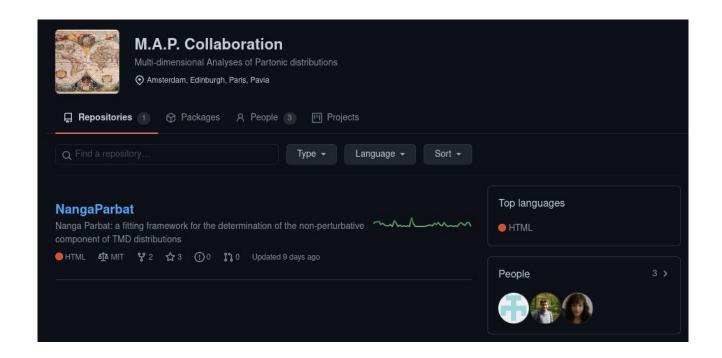

$$\hat{b}(b_T; b_{\min}, b_{\max}) = b_{\max} \left( \frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}} \right)$$

$$b_{\max}, b_T \to +\infty$$

$$b_{\min}, b_T \to 0$$

$$b_{
m max} = 2e^{-\gamma_E}$$
  
 $b_{
m min} = 2e^{-\gamma_E}/Q$ 

These choices guarantee that for Q=1 GeV the TMD coincides with the NP model

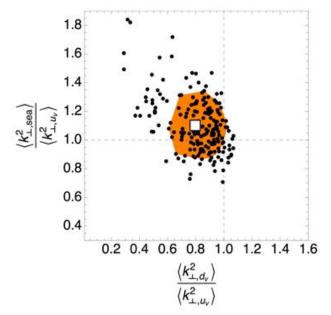



# Some open questions

A non-exhaustive *personal* list of open questions:

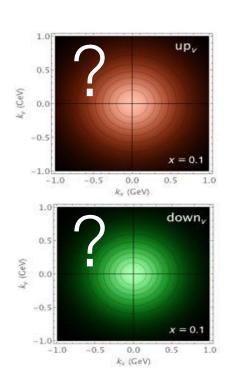
- deepen our understanding of sea quarks
- flavor structure of TMDs
- experimental confirmation of **sign change** relation
- **gluon** observables and **spin-1** effects
- what can hadronization teach us about confinement?
- interplay between **nuclear/hadron** and **high-energy** physics
- •

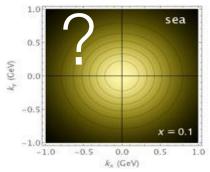
## The M.A.P. collaboration




Multi-dimensional analyses of partonic distributions (MAP)
Amsterdam / Edinburgh / Paris / Pavia

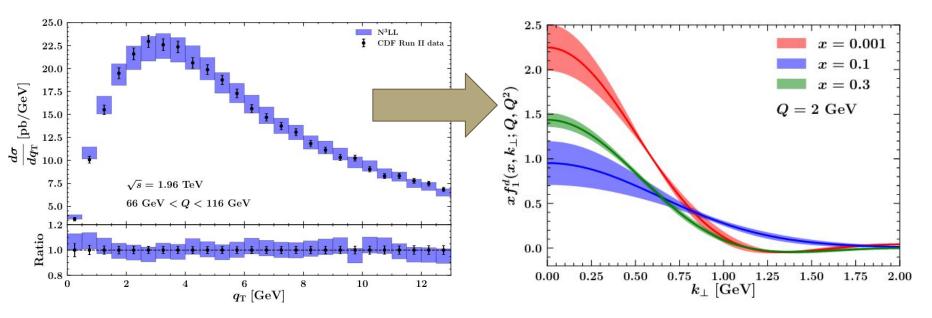
# Flavor structure of TMDs (PV13)


Imaging from **SIDIS** data from Hermes experiment


Ratio of width of sea / width of up valence



Ratio width of down valence/ width of up valence








# **Precise extraction of TMDs (PV19)**

Imaging from **Drell-Yan** data (Fermilab, low energy and Z + LHC)



**State of the art accuracy in perturbation theory (N3LL)**